347 | 0 | 62 |
下载次数 | 被引频次 | 阅读次数 |
针对室内定位精度低、易受多路径效应干扰、环境噪声大的问题,提出一种基于拓展卡尔曼滤波(EKF)的超宽带(UWB)+蓝牙低功耗技术(BLE)组合定位数据融合算法,首先推导了UWB双边双向测距(DS-TWR)模型、BLE对数距离路径衰减的测距模型和EKF融合UWB+BLE的数学模型,同时通过实验验证了新方法的可靠性和稳定性,实验数据表明:UWB+BLE的数据融合室内定位的精度优于单一UWB或BLE定位精度。使用UWB设备进行室内定位,定位最大误差、最小误差分别为30.76、6.44 cm,使用BLE设备进行室内定位,定位最大误差、最小误差分别为68.50、15.23 cm;与传统空间四点定位算法相比,EKF融合算法的定位结果在最大误差、最小误差、RMSE进度分别提升了46.63%、41.90%、42.00%。
Abstract:To address the issues of low indoor positioning accuracy, susceptibility to multi-path interference, and high environmental noise, we proposed a positioning data fusion algorithm based on extended Kalman filter(EKF) for ultra wide band(UWB) and bluetooth low energy(BLE). Firstly, we derived the UWB double side-two way ranging(DS-TWR) model, the BLE logarithmic distance path attenuation ranging model, and the EKF fusion UWB+BLE mathematical model. Then, we verified the reliability and stability of new method through experiments. The experimental data show that the accuracy of UWB+BLE data fusion indoor positioning is superior to that of a single UWB or BLE positioning.Using UWB equipment for indoor positioning, the maximum and minimum positioning errors are 30.76 cm and 6.44 cm, respectively. Using BLE equipment for indoor positioning, the maximum and minimum positioning errors are 68.50 cm and 15.23 cm, respectively. Compared with traditional spatial four point positioning algorithms, the EKF fusion algorithm has improved the positioning results by 46.63%, 41.90%, and42.00% in terms of maximum error, minimum error, and RMSE progress, respectively.
[1]李雪强,李建胜,王安成,等.视觉/惯性/UWB组合导航技术综述[J].测绘科学,2023,48(6):49-58
[2]揭会林.基于UWB/WiFi融合的低开销可扩展室内定位技术研究[D].重庆:重庆大学,2022
[3]孙建军.基于遗传算法的地磁匹配导航应用[J].地理空间信息,2017,15(6):26-27
[4]乔智,徐爱功,隋心,等.一种单目视觉/UWB组合的室内定位方法[J].导航定位学报,2018,6(4):29-34
[5]徐爱功,王鹏语,隋心,等.非视距环境下基于PSO-SVM和RAIM的UWB定位方法[J].测绘科学,2023,48(4):1-9
[6]钱剑航.加权最小二乘的NLOS UWB室内定位精度分析[J].地理空间信息,2023,21(8):86-88
[7]李凯俊,赵晨,赵春晖.基于自适应扩展卡尔曼滤波器的UWB-PDOA算法[J].黑龙江大学工程学报(中英俄文),2023,14(2):33-39
[8]陈炳权.基于RSSI的BLE设备室内测距算法研究及实现[D].广州:广州大学,2023
[9]王敏敏. UWB/蓝牙组合室内行人导航定位模型研究[D].北京:北京建筑大学,2023
[10]吴耀翔.基于UWB和BLE融合的室内定位技术研究[D].厦门:厦门大学,2022
[11]李娜,贺海育,景敏,等.基于改进EKF的IMU动态误差抑制[J].南京航空航天大学学报,2023,55(4):718-724
[12]黄永琦,秦品乐,曾建潮,等.基于改进EKF的激光和视觉SLAM融合算法[J].中北大学学报(自然科学版),2023,44(5):536-543
基本信息:
DOI:
中图分类号:TN925
引用信息:
[1]魏桂荣,谢旭光.UWB+BLE数据融合的室内定位算法及其精度评估[J].地理空间信息,2025,23(02):112-115.
基金信息:
山东省自然科学基金资助项目(ZR201807060327)