249 | 0 | 75 |
下载次数 | 被引频次 | 阅读次数 |
精准科学地评价中国城市受新冠疫情的短期影响及恢复情况并揭示其时空变化特征,可为“常态化”疫情防控阶段城市经济形势研判和城市恢复提供有力支撑。利用夜间灯光数据(NTL)、PMI人口迁徙数据、空气污染等多源数据构建疫情影响和恢复指标,以城市爆发疫情为基准,使用地理统计和同心环分析,对在不同时空尺度下对城市经济的异质性影响进行实证分析。结果表明,使用多源数据整合指标可以有效地反映疫情对城市造成的影响及城市恢复趋势;在空间分布上,住宅区及郊外受影响较小,中心商业区及工业区受影响较大。
Abstract:Accurate and scientific evaluation of the short-term impact and recovery of Chinese cities from COVID-19 and revealing its spatio-temporal change characteristics can provide strong support for the study and assessment of urban economic situation and urban recovery in the “normal” epidemic prevention and control stage. We used the multi-source data, such as VIIRS nighttime light, PMI population migration data and air pollution, to construct epidemic impact and recovery indicators. Based on the outbreak in cities, we used geographical statistics and concentric-ring analysis to conduct empirical analysis on the urban economy heterogeneity at different spatio-temporal scales. The results show that the multi-source data integration index can effectively reflect the impact of epidemic on the city and the trend of urban recovery. In terms of spatial distribution, residential areas and suburbs are less affected, while central business and industrial areas are more affected.
[1]张校源,王浩,宁晓刚,等.新冠疫情暴发对城市经济影响的时空差异分析[J].测绘科学,2022,47(4):189-198
[2]张云飞.统筹推进“美丽中国”建设和“健康中国”建设:基于防控新型冠状病毒感染肺炎疫情阻击战的思考[J].福建师范大学学报(哲学社会科学版),2020,64(2):21-26,167
[3]张桂芹,白浩强,李彦,等.疫情常态化管控下济南市春节前后PM2.5中二次组分变化特征[J].环境化学,2021,39(2):1-14
[4] Maria C C,Alessandro A,Bertanza,et al. Lockdown for CoViD-2019 in Milan:What are the Effects on Air Quality?[J]. Science of the Total Environment,2020(10):732-379
[5]栾峰,张引,秦楷洲,等.重大疫情的区域传播特征及其规划策略:2019新型冠状病毒肺炎疫情反思[J].城市规划,2021,45(3):57-70
[6] Feng Z,Xiao C,Li P,et al. Comparison of Spatio-temporal Transmission Characteristics of COVID-19 and Its Mitigation Strategies in China and the US[J]. Journal of Geographical Sciences,2020,30(12):1 963-1 984
[7] Levin N,Zhang Q L. A Global Analysis of Factors Controlling VIirs Righttim Light Levels from Densely Populated Areas[J]. Remote Sensing of Environment,2017,190:366-382
[8] Hu T,Huang X. A Novel Locally Adaptive Method for Modeling the Spatiotemporal Dynamics of Global Electric Power Consumption Based on DMSP-OLS Nighttime Stable Light Data[J]. Applied Energy,2019,240:778-792
[9]江泽霖,邓健,栾海军,等.基于逐日夜间灯光遥感的新冠肺炎疫情变化信息快速提取:以北京市为例[J].测绘通报,2022(7):43-48
[10]童昀,马勇,刘海猛. COVID-19疫情对中国城市人口迁徙的短期影响及城市恢复力评价[J].地理学报,2020,75(11):2 505-2 520
[11] Shao Z,Tang Y,Huang X,et al. Monitoring Work Resumption of Wuhan in the COVID-19 Epidemic Using Daily Nighttime Light[J]. Photogrammetric Engineering and Remote Sensing,2021,87(3):78-82
[12]李雪萍,贡璐. DMSP/OLS和VIIRS/DNB夜间灯光影像的校正及拟合[J].测绘通报,2019(7):138-146
基本信息:
DOI:
中图分类号:F299.2;P237
引用信息:
[1]刘亚静,周帅.新冠疫情对中国城市的短期影响及城市恢复力评价[J].地理空间信息,2024,22(08):28-32.
基金信息:
国家自然科学基金资助项目(52274166)