成都大学建筑与土木工程学院;
采用2000—2020年欧盟委员会联合研究中心发布的逐年地表永久水体和季节水体数据集,分析了四川省30个大型湖泊和102个大型水库(水体面积在1 km2以上)的水体时空变化特征,探究了水体与降水和陆地水储量的关系。研究结果表明,2000—2020年大型湖泊和水库整体均呈永久水体面积增加、季节水体面积减少的变化趋势;从个体尺度来看,12个大型湖泊的永久水体面积显著增加,7个大型湖泊的季节水体面积显著减少,89个大型水库的永久水体面积显著增加,43个大型水库的季节水体面积显著减少。大型湖泊和水库的永久水体与年降水量、陆地水储量均存在较高的正相关性,相关系数分别达到0.68和0.90。
254 | 0 | 93 |
下载次数 | 被引频次 | 阅读次数 |
[1] Huang C,Chen Y,Zhang S,et al. Detecting,Extracting,and Monitoring SurfaceWater from Space Using Optical Sensors:A Review[J].Reviews of Geophysics,2018,56(2):333-360
[2]周岩,董金玮.陆表水体遥感监测研究进展[J].地球信息科学学报,2019,21(11):1 768-1 778
[3]汤秋鸿,张学君,戚友存,等.遥感陆地水循环的进展与展望[J].武汉大学学报(信息科学版),2018,43(12):1 872-1 884
[4] Deng Y,Jiang W,Tang Z,et al. Long-term Changes of Open-surface Water Bodies in the Yangtze River Basin Based on the Google Earth Engine Cloud Platform[J]. Remote Sensing,2019,11(19):2 213
[5]王美雅,徐涵秋,付伟,等.城市地表水体时空演变及其对热环境的影响[J].地理科学,2016,36(7):1 099-1 105
[6] Deng Y,Jiang W,Wu Z,et al. Assessing Surface Water Losses and Gains Under Rapid Urbanization for SDG 6. 6. 1Using Long-term Landsat Imagery in the Guangdong-Hong Kong-Macao Greater Bay Area,China[J]. Remote Sensing,2022,14(4):881
[7]骈蔚然,张莉,耿晴.基于山地水体指数的水体边界提取方法[J].地理空间信息,2022,20(3):25-29
[8]经波,宁文怡.基于阈值分割与决策树的SAR影像水体信息提取[J].地理空间信息,2021,19(3):46-49
[9]岑铭.基于GEE平台的广西地表水时空特征分析[J].地理空间信息,2023,21(2):17-22
[10] Pekel J F,Cottam A,Gorelick N,et al. High-resolution Mapping of Global Surface Water and Its Long-term Changes[J]. Nature,2016,540(7 633):418-422
[11] Wang X,Xiao X,Qin Y,et al. Improved Maps of Surface Water Bodies,Large Dams,Reservoirs,and Lakes in China[J].Earth System Science Data,2022,14(8):3 757-3 771
[12]邓珊珊,刘苏峡,莫兴国,等.全球陆地水储量异常时空分布重建数据集(1981-2020)[J/OL].(2023-02-03)[2023-03-04].https://www. geodoi. ac. cn/WebCn/doi. aspx?Id=3226,全球变化数据仓储电子杂志(中英文),DOI:10. 3974/geodb.2023. 02. 03. V1
[13]姜瑶,徐宗学,王静.基于年径流序列的五种趋势检测方法性能对比[J].水利学报,2020,51(7):845-857
[14]孙思琦,陈永喆,王聪,等.华北地区生态保护与恢复的水资源效应研究[J].中国工程科学,2022,24(5):97-106
[15] Huang C,Chen Y,Zhang S,et al. Surface Water Mapping from Suomi NPP-VIIRS Imagery at 30 m Resolution Via Blending with Landsat Data[J]. Remote Sensing,2016,8(8):631
[16] Heimhuber V,Tulbure M G,Broich M. Addressing Spatiotemporal Resolution Constraints in Landsat and MODIS-based Mapping of Large-scale Floodplain Inundation Dynamics[J]. Remote Sensing of Environment,2018,211:307-320
[17] Ye X,Meng Y,Xu L,et al. Net Primary Productivity Dynamics and Associated Hydrological Driving Factors in the Floodplain Wetland of Chinas’ Largest Freshwater Lake[J].Science of the Total Environment,2019,659:302-313
基本信息:
DOI:
中图分类号:P343.3
引用信息:
[1]陈林,邓越.四川省大型湖泊和水库水体长时序时空变化分析[J].地理空间信息,2024,22(07):72-75.
基金信息:
四川省教育厅2022年省级大学生创新创业训练计划资助项目(S202211079072)